

2.4 Legge di Hooke

Compito

Le forze possono deformare corpi solidi?

In questo esperimento si misura la deformazione che è causata dal peso di due "masse" su due molle. La deformazione è una caratteristica propria di ciascuna molla, ciononostante si può osservare che vi è una legge fondamentale. Scopo di questo esperimento è verificare questa legge – la legge di Hooke.

Us	Usa lo spazio sottostante per le tue annotazioni.						

Materiale

Materiale da "TESS advanced Physics Set Mechanics 1, ME-1" (Order No. 15271-88)

Positione No.	Materiale	Order No.	Quantity
1	Base di sostegno, variabile	02001-00	1
2	Asta di supporto divisa in 2 aste, I = 600 mm	02035-00	1
3	Doppio morsetto	02043-00	1
4	Supporto per pesi scanalati, 10 g	02204-00	1
5	Peso scanalato, di colore nero, 10 g	02205-01	4
5	Peso scanalato, di colore nero, 50 g	02206-01	3
6	Molla a elica 3 N/m	02220-00	1
7	Molla a elica, 20 N/m	02222-00	1

8	Perno di fissaggio	03949-00	1
9	Supporto per tubo di vetro con gancio per metro	05961-00	1
10	Metro, / = 2 m	09936-00	1

Materiale richiesto per l'esperimento

Setup

Avvita insieme le due aste di supporto (Fig. 1). Monta la base di sostegno e l'asta di sostegno come vedi in Fig. 2 e Fig. 3

Fig. 1

Fig. 3

Aggancia il metro nel supporto per tubo di vetro (Fig. 4) e fissa entrambi alla base dell'asta di sostegno (Fig. 5).

ig. 5

Fissa il perno di fissaggio nel doppio morsetto (Fig. 6) e appendi la molla 1 ad esso (Fig. 7).

Fig. 7

Regola la lunghezza del metro in modo che la tacca dello zero sia esattamente allo stesso livello della parte inferiore dell'estremo della molla. Vedi Fig. 8 e Fig. 9.

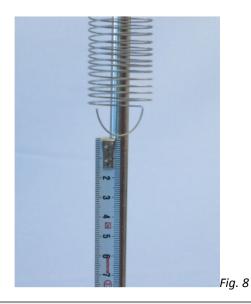


Fig. 9

Azioni

- Appendi il supporto per pesi (m = 10 g) all'estremo uncinato della molla e registra l'estensione Δ/ (Fig. 10).
- Aumenta la massa con incrementi di 10 g fino ad un totale di 50 g e leggi i corrispondenti cambiamenti in lunghezza Δl .
- Registra tutti i valori della massa m e l'estensione / in Tabella 1 nella pagina dei Risultati.
- Calcola il peso (forza) $F_g = m \times 0.00981$ N/g. Puoi vedere i valori in un grafico.

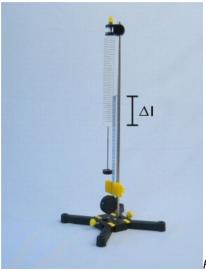


Fig. 10

Per fissure i pesi scanalati al supporto per pesi, devi inserirli dalla cima del supporto (Fig. 11).

Fig. 11

- Cambia la molla 1 con la molla 2. Sposta il metro finché la tacca dello zero coincide con l'estremo inferiore della molla.
- Appendi il supporto per pesi con una massa di 10 g (somma = 20 g) al gancio della molla e annota l'estensione
 Δ/. Determina la corrispondente estensione in lunghezza.
- Aumenta la massa con incrementi di 20 g fino ad un totale di 200 g e determina la corrispondente estensione in lunghezza.
- Registra questi valori in Tabella 1 nella pagina dei Risultati e calcola anche il peso (forza).

Per smontare la base di sostegno devi premere i bottoni gialli (Fig. 12).

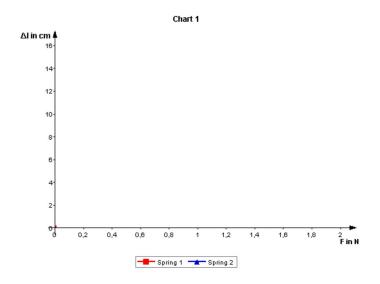


Fig. 12

Risultati

Tabella 1

Massa	Peso (forza)	Estensione della Molla 1	Estensione della molla 2
<i>m</i> in g	F _g in N	Δ/ in cm	Δ/ in cm
10			
20			
30			
40			
50			
60			
80			
100			
120			
140			
160			
180			
200			

Valutazioni

	_	m	_	_	اہ	-	4	
ы	n	m	а	n	п	a	- 1	

Quale relazione si può vedere nei valori del grafico? Quale è la differenza tra le due molle?
Domanda 2: Quale oggetto viene deformato dai pesi scanalati (masse)?
Domanda 3:
I valori per le due molle stanno in una linea retta?
Domanda 4: L'estensione Δl delle due molle è proporzionale al peso (forza) F_8 e quindi alla massa m ?
Domanda 5: Determina il fattore di proporzionalità factor (<i>k</i>) dalle due curve:
1. $k_1 = \Delta l_1 / F_{g1}$; $k_1 =$ m/N
2. $k_2 = \Delta l_2 / F_{g2}$; $k_2 =$ m/N
Compito aggiuntivo
Le due molle differiscono nel fattore di proporzionalità k . Il loro reciproco $1/k$ si chiama constante della molla D o forza deformante: $D = 1/k = F/\Delta l$
La costante della molla è specifica per ciascuna molla.

Domanda 1: Calculata la costante della molla. Quale delle due molle ha la costante maggiore?
Domanda 2:
Quale è l'effetto di questa costante maggiore?
Domanda 3: Le tue misure sono in accordo con le costanti dichiarate delle molle nella lista dei materiali?
Domanda 4: La deviazione è maggiore del ±10 %?